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Abstract

We study the QCD evolution for the twist-three quark-gluon correlation functions associated

with the transverse momentum odd quark distributions. Different from that for the leading twist

quark distributions, these evolution equations involve more general twist-three functions beyond

the correlation functions themselves. They provide important information on nucleon structure,

and can be studied in the semi-inclusive hadron production in deep inelastic scattering and Drell-

Yan lepton pair production in pp scattering process.
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Semi-inclusive hadronic processes have attracted much theoretical interest in recent years,

where the so-called transverse momentum dependent (TMD) parton distributions and frag-

mentation functions can be studied [1–8]. These functions generalize the original Feynman

parton picture, where the partons only carry longitudinal momentum fraction of the parent-

ing (final state) hadron. They certainly provide further important information on nucleon

structure, and are crucial to understand the novel spin phenomena, such as the single trans-

verse spin asymmetry (SSA) [1–3, 9, 10].

Important aspects of the TMD parton distributions have been explored in the last few

years, such as the gauge property and the crucial role of the initial/final state interaction for

the nonzero Sivers quark distribution leading to the SSA in Semi-inclusive hadron production

in deep inelastic scattering (SIDIS) and Drell-Yan lepton pair production processes [1–

4]. Further study has shown that this mechanism is uniquely related to the twist-three

quark-gluon correlation approach for the SSA phenomena [11–15]. In particular, these

two approaches are unified to describe the same physics in the overlap region where both

apply [16].

At the leading order, there are eight independent TMD quark distributions, depending

on the polarizations of the nucleon and the quark [7, 8]. Three of them are called k⊥-

even distributions. After integrating over transverse momentum, they produce the leading-

twist quark distributions, including the spin average, longitudinal polarized, and transversity

quark distributions [17]. The rest five distributions are called k⊥-odd distributions. Upon

integral over the transverse momentum, they will vanish in the quark correlation matrix. In

this paper, we are interested in four of these k⊥-odd TMD quark distributions. They can

be defined from the following matrix,

Mαβ(x, k⊥) = P+

∫
dξ−

2π
eixξ−P+

∫
d2b⊥
(2π)2

e−i~b⊥·~k⊥
〈
PS

∣∣∣Ψβ

v (0)Ψα
v (ξ−, 0,~b⊥)

∣∣∣PS
〉

, (1)

where x is the longitudinal momentum fraction of the proton carried by the quark and k⊥ is

the transverse momentum. In the above definition we have chosen P = (P+, 0−, 0⊥) which

is along the momentum direction of the proton, S is the polarization vector, and Ψv(ξ) is

defined as Ψv(ξ) ≡ Lv(−∞; ξ)ψ(ξ) , with Lv the gauge link. This gauge link contains the

light-cone gauge link contribution and the transverse gauge link contribution at the spatial

infinity [3]. We have chosen it goes to −∞, indicating that we adopt the definition for the

TMD quark distributions for the Drell-Yan process [1–3]. The four k⊥-odd TMD quark
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distributions can be obtained by the following expansion of the above quark correlation

matrix [7, 8],

M =
1

2M

[
g1T (x, k⊥)γ5 6P ( ~k⊥ · ~S⊥) + f⊥1T (x, k⊥)εµναβγµPνkαSβ

+h1L(x, k⊥)λiσµνγ5P
µkν
⊥ + h⊥1 (x, k⊥)σµνkµPν + · · · ] , (2)

where M is the nucleon mass and the interpretations of the four k⊥-odd TMD quark distribu-

tions are: g1T and f⊥1T represent a longitudinal polarized and unpolarized quark distributions

in a transversely polarized nucleon, respectively; h1L and h⊥1 represent transversely polarized

quark distributions in a longitudinal polarized and unpolarized nucleon target, respectively.

They are k⊥-odd distributions, i.e., after integrating over the transverse momentum, the

above expansion will vanish. However, if we weight the integral with transverse momentum,

the above matrix will lead to a set of quark-gluon correlation functions at the twist-three

level. These correlation functions can be calculated as transverse momentum-moment of the

above four k⊥-odd TMD quark distributions. The last k⊥-odd TMD quark distribution h⊥1T

represents a correlated transversely polarized quark distribution in a transversely polarized

nucleon target, and is related to the twist-four quark-gluon correlation function. We will

not discuss this function in this paper.

As mentioned above, the transverse-momentum-moment of the above four TMD quark

distributions define the following transverse momentum dependent correlation functions in

nucleon,

∫
d2k⊥

~k2
⊥

2πM2
f⊥1T (x, k⊥) = TF (x) ,

∫
d2k⊥

~k2
⊥

2M2
g⊥1T (x, k⊥) = g̃(x) , (3)

∫
d2k⊥

~k2
⊥

2πM2
h⊥1 (x, k⊥) = T

(σ)
F (x) ,

∫
d2k⊥

~k2
⊥

2M2
h⊥1L(x, k⊥) = h̃(x) . (4)

We emphasize again that the above TMD quark distributions follow their definitions in

Drell-Yan process. If we choose those for the semi-inclusive DIS process, the above two

equations associated with TF (x) and T
(σ)
F (x) shall change signs. These correlation functions

are related to more general quark-gluon correlation functions. For example, TF (x) and

T
(σ)
F (x) are diagonal parts of the general quark-gluon correlation functions TF (x1, x2) and

T
(σ)
F (x1, x2) which are responsible for the single spin asymmetry in hadronic process [12, 18]:

TF (x) ≡ TF (x, x) and T
(σ)
F (x) ≡ T

(σ)
F (x, x).1 They can be defined through the following

1 For the convenience of our presentation, we have changed the normalizations for TF (x1, x2) and
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correlation matrix,

Mµ
Fαβ(x) ≡

∫
dy−

2π

dy−1
2π

eixP+y−〈PS|ψ̄β(0)gF+µ(y−1 )ψα(y−)|PS〉 , (5)

where µ is a transverse index, F+µ the gluon field tensor, and the gauge link has been

suppressed. Its decomposition contains the contribution from TF (x) and T
(σ)
F (x),

Mµ
Fαβ(x) =

M

2

[
TF (x)ενµ

⊥ S⊥νp/ + T
(σ)
F (x)iγµ

⊥p/
]

. (6)

Similarly, we can calculate the other two correlation functions by [4],

M̃µ
Fαβ(x) =

M

2

[
g̃(x)Sµ

⊥γ5p/ + h̃(x)λγ5γ
µ
⊥p/

]
. (7)

where M̃µ
Fαβ is defined as,

M̃µ
Fαβ(x) =

∫
dξ−

2π
eiξ−xP+〈PS|ψβ(0)

{
iD⊥

µ(ξ−)−
∫ −∞

ξ−
dζ−gF+µ(ζ−)

}
ψα(ξ−)|PS〉 .(8)

Applying the time-reversal invariance, we find the above definition of g̃ is the same as that

in [14], except a normalization factor 2.

The above four correlation functions are subsets of more general twist-three quark-gluon

correlation functions [17, 19]: GD(x, y), G̃D(x, y), HD(x, y) and E(x, y). These twist-three

functions and their contributions to the inclusive DIS and Drell-Yan lepton pair productions

have been under intense investigations in the last two decades (see for example [17]). The

above four correlation functions Eqs. (3,4), however, will enter in the transverse momentum

weighted cross sections in the semi-inclusive hadron production in DIS and Drell-Yan lepton

pair production in pp collisions [7, 8, 20]. They will provide additional information on

the quark-gluon correlations in nucleon, and will be complementary to those studied in

the inclusive DIS and Drell-Yan processes. Recent experimental developments will help to

pin down these contributions, and build strong physics associated with these correlation

functions [21].

One of the important questions remained to be answered is the scale evolution for these

correlation functions. The evolution equation controls the energy dependence of the associ-

ated observables [22]. For example, with the evolution equations, we will be able to compare

the single spin asymmetries coming from the same quark-gluon correlation function TF (x)

T
(σ)
F (x1, x2) by a factor of 1/2πM as compared to those in [16, 18].
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in hadronic processes at different energy experiments. General structure of the evolution

equations for the twist-three quark-gluon correlation functions has been known in the liter-

ature [23]. However, the above correlation functions Eqs. (3,4) are special projections of the

general twist-three quark-gluon correlations, and their evolutions are not directly available

from the already known results [23]. Earlier attempts [24] have been made to derive the

evolution equations for the correlation functions of Eqs. (3,4), but were not complete. On

the other hand, from the large transverse momentum quark Sivers function calculated in

[16], we would already obtain the evolution equation for TF (x), since the collinear diver-

gence in that calculation will lead to the splitting function of TF (x). This splitting function

was confirmed by a complete calculation of next-to-leading order QCD correction to the

transverse-momentum weighted spin asymmetry in Drell-Yan lepton pair production [25].

More comprehensive evolution equations for TF (x), together with those for the three-gluon

correlation functions which are relevant to the single spin asymmetry observables have re-

cently been derived in [26]. In this paper, we will extend these studies to calculate the scale

evolutions for the above four quark-gluon correlation functions. Their contributions to the

azimuthal angle distributions in Drell-Yan lepton pair production in pp collisions, and the

relevant QCD factorization analysis will be presented in a forthcoming publication [27].

In our calculations, we will choose the light-cone gauge: A+ = 0. There are several

advantages for this choice. First, the quark Sivers function was previously calculated in

the covariant gauge [16]. Our calculation in the light-cone gauge will provide an important

cross check for the results. Second, the light-cone gauge is more convenient to calculate

the evolution equations for g̃ and h̃. In particular, the evolution equations for TF (x) and

g̃(x) can be calculated simultaneously. The only difference is that for TF (x) we have to

take a pole contribution for some diagrams, whereas for g̃(x) we will not take the pole (see

the discussions below). Third, we can further choose a particular boundary condition in the

light-cone gauge [3], which will greatly simplify the derivation. We have also checked that the

final results do not depend on the boundary condition. According to the quark distribution

definition we have chosen above, it is convenient to choose the retarded boundary condition,

i.e., A⊥(−∞−) = 0. With this choice, the gauge link associated with the TMD quark

distributions in Eq. (1) becomes unit, and their contributions can be neglected [3]. From
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FIG. 1: Real gluon radiation contribution to the evolution equations for the twist-three quark-gluon

correlation functions TF (x), g̃(x), T
(σ)
F (x), h̃(x).

this, we can re-write the quark-gluon correlation functions TF (x) and g̃ as

TF (x) =

∫
dy−

8π2M
eixP+y−〈PS|ψ̄(0)n/ενµ

⊥ S⊥νi∂⊥µψα(y−)|PS〉 , (9)

g̃(x) =

∫
dy−

4πM
eixP+y−〈PS|ψ̄β(0)γ5n/S⊥µi∂

µ
⊥ψα(y−)|PS〉 , (10)

in the light-cone gauge with retarded boundary condition. Similar expressions hold for

other two correlation functions, T
(σ)
F and h̃. In the following calculations, we will focus on

the derivation for the evolution functions for TF and g̃, especially for TF , and those for T
(σ)
F

and h̃ can be obtained accordingly.

To calculate the splitting function for the above two functions, we have to take into

account the contributions from the operators
(
ψ̄∂⊥ψ

)
and

(
ψ̄A⊥ψ

)
[19], because they are

at the same order. Especially, because of the contribution from A⊥, the evolution of the

above correlation functions will involve more general twist-three functions: GD and G̃D

or TF (x1, x2) and T
(σ)
F (x1, x2). This is an important feature for the scale evolution of the

higher-twist distributions, such as that of the gT structure function [23].

We plot the Feynman diagram contributions from the real gluon radiations in Fig. 1,

where (a) is the contribution from the partial derivative on the quark field, and (b− d) are

those from A⊥ contributions. The virtual corrections only contribute to partial derivative

part, and they are easy to carry out.

We will perform the collinear expansion for the hard scattering part to calculate the
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contribution from Fig. 1(a). The linear k⊥ expansion term combining with the quark field

will lead to the quark-gluon correlation function TF (x) and g̃(x) in Eqs. (9,10). In the

collinear expansion in terms of k⊥, we can fix the transverse momentum of the probing quark

(lq) or the radiated gluon (lg), because of momentum conservation and we are integrating

over them to obtain TF (x) and g̃(x). We have also checked that they will generate the same

result. In the following calculations, we choose lg being fixed in the collinear expansion.

This will avoid the collinear expansion of the on-shell condition for the radiated gluon, and

simplify the derivations.

For the A⊥ contribution, we notice that F+µ = ∂+Aµ
⊥ in the light cone gauge. Therefore,

one can relate the corresponding soft matrix to the correlation function TF (x, x1) in the

following way,

i

x− x1 + iε

∫
dy−dy−1

4π
eix1P+y−ei(x−x1)P+y−1 〈PS|ψ̄β(0−)n/ενµ

⊥ S⊥νgF+
µ(y−1 )ψα(y−)|PS〉

=

∫
dy−dy−1

4π
P+eix1P+y−ei(x−x1)P+y−1 〈PS|ψ̄β(0−)n/ενµ

⊥ S⊥νgA⊥µ(y−1 )ψα(y−)|PS〉 . (11)

In the above formula, the soft gluon pole appears in the first line comes from the partial

integration. The prescription of this pole has been determined because we have chosen

the retarded boundary condition. For the same reason, we have to regulate the light cone

propagator in a consistent manner, and the gluon propagator in Fig. 1(c) in the light cone

gauge with retarded boundary condition is given by [3],

Dαβ(l) =
−i

l2 + iε

(
gαβ − lαnβ + nαlβ

l · n + iε

)
, (12)

where l is the gluon propagator momentum entering the quark-gluon vertex in Fig.1(c).

Adding the contributions from the partial derivative and A⊥, we reach our final formula

for the TF (x) splitting calculation,

T
(1)
F (xB) =

∫
dxd2lg⊥

∂

∂kµ
⊥

{
[Ĥ(k, lg)p/]× lµq⊥

}
|k⊥=0TF (x, x)

+

∫
dxdx1d

2lg⊥
{

[Ĥµ(xP, x1P, lg)p/]× lµq⊥
} 1

π

i

x− x1 + iε
TF (x, x1) , (13)

where the transverse spin vector has been integrated out, and the transverse index µ is not

meant to be summed up. lq⊥ is the probing quark transverse momentum. In the above

equation, Ĥ(k, lg) represents the hard partonic part in Fig. 1(a) with transverse momen-

tum dependence on k⊥, and Ĥµ(xP, x1P, lg) the hard part for Figs. 1(b-d) with transverse
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polarized gluon A⊥µ insertion where all momenta are collinear. We have to include both

contributions to obtain a complete result.

We have similar expression for g̃(x) splitting. The only difference is to replace6 p with γ56 p
and similar replacement in the hard parts in the above two terms. More over, because of

simple Dirac algebra, the first term is the same for both TF (x) and g̃(x) which comes from

Fig. 1(a). Let us first discuss this contribution. In the calculations, we have to perform the

collinear expansion in terms of kµ
⊥. Because of the momentum conservation, lµq = kµ

⊥ − lµg ,

we can separate the contribution from the explicit dependence on kµ
⊥,

T
(1)
F |Fig.1(a) =

∫
dxTF (x, x)d2lg⊥

{[
Ĥ(k, lg)p/

]
|k⊥=0 − lµg⊥

∂

∂kµ
⊥

[
Ĥ(k, lg)p/

]
|k⊥=0

}
. (14)

The first term is easy to derive, and its contribution will be

αs

2π

∫
dx

x

dl2g⊥
l2g⊥

CF

(
1 + z2

1− z

)
TF (x, x) . (15)

where z = xB/x, and the well-known splitting kernel appears. This splitting kernel contains

the end-point divergence, which should be canceled out by the virtual diagram contributions.

After taking into account the virtual contribution, the end-point will be regulated by the

plus function,

αs

2π

∫
dx

x

dl2g⊥
l2g⊥

CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
TF (x, x) , (16)

where the plus function follows the definition of [22]. To calculate the second term of

Eq. (14), we will do the collinear expansion of the hard scattering part Ĥ(k, lg) with lg⊥

fixed. The transverse momentum k⊥ flow can go through the quark line in Fig. 1(a), for

which we label as “cross” in the diagram. We can further simplify the derivation by using

the following identity,

∂

∂kα

i

k/
=

i

k/
iγα i

k/
, (17)

which essentially represents the application of the Ward identity. Applying the above iden-

tity, we can relate the k⊥ expansion in the quark propagator and quark line to that with a

transverse polarized gluon insertion with zero momentum attachment. These contributions

shall be combined with those from Figs. 1(c-d). We will discuss them below.

As we mentioned above, the contributions from Fig. 1(a) are the same for the evolutions

of TF (x) and g̃(x). Therefore, the above results apply for that of g̃(x) too. However, the
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contributions from Figs. 1(b-d) are different for TF (x) and g̃(x). This is because for this

part, we have to take pole contribution to obtain the splitting for TF (x), whereas for g̃(x)

we do not take pole contribution. We first discuss their contributions to the evolution of

TF (x) correlation function. Depending on the value of xg = x− x1 when we take the pole,

these poles are called soft (xg = 0) and hard (xg 6= 0) poles, respectively. The hard pole

contribution only comes from the light-cone propagator in Fig. 1(c), and its contribution is

easy to calculate. For this, we obtain

T
(1)
F |hp

Fig.1(c) =
αs

2π

∫
dx

x

dl2g⊥
l2g⊥

CA

2

(
1 + z

1− z

)
TF (xz, x) . (18)

We emphasize that for the hard pole contribution the explicit factor 1/(x − x1) has been

included in the above result, which is finite because x 6= x1.

On the other hand, the soft pole contribution comes from the explicit pole in Eq. (13)

which leads to a delta function δ(x1−x). Because this pole results into zero gluon momentum

insertion to the diagrams, we can combine these contributions with the second term in

Eq. (14) as we mentioned above. Therefore, we can add them together,

−
∫

dxTF (x, x)d2lg⊥lµg⊥

{
∂

∂kµ
⊥

[
Ĥ(k, lg)p/

]
|k⊥=0 −

[
Ĥµ(xP, xP, lg)p/

]}
. (19)

From this equation, we find that the contribution from Fig. 1(b) cancels out that from the k⊥

expansion on the quark line with momentum “k”, because they have the same color-factor

but opposite signs. The Fig. 1(d) and the k⊥ expansion on the quark propagator “k− lg” are

also the same but with different color-factor: color-factor for Fig. 1(d) is −1/2Nc whereas

that for Fig. 1(a) is CF . Their total contributions will add up to a color-factor CA/2. The

same color-factor CA/2 appears for Fig. 1(c). Thus, the final result for this contribution will

be proportional to CA/2. By applying the identity of Eq. (17) again, we can re-write this

part of contribution as

−αs

2π

CA

2

∫
dxTF (x, x)d2lg⊥

[
∂

∂lµg⊥
Ĥ0(xP, lg⊥)

]
× (−lµg⊥)

= −αs

2π

CA

2

∫
dxTF (x, x)d2lg⊥Ĥ0(xP, lg⊥)

= −αs

2π

CA

2

∫
dx

dl2g⊥
l2g⊥

(
1 + z2

1− z

)
TF (x, x) , (20)

where Ĥ0 represent the hard scattering part without color factor and we have made use of

the fact that the hard part Ĥ0(xP, lg⊥) ∝ 1/l2g⊥. Again, the same splitting kernel appears.
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Finally, there is also contribution from T̃F (x1, x2), which only comes from the hard pole

diagram Fig. 1(c). Summing up all contributions, we obtain the scale evolution equation for

the diagonal part of the quark-gluon correlation function TF (x1, x2),

∂

∂ln µ2
TF (xB, µ2) =

αs

2π

∫
dx

x

[
CF

{
1 + z2

(1− z)+

+
3

2
δ(1− z)

}
TF (x, x)

+
CA

2

{
1 + z

1− z
TF (xz, x)− 1 + z2

1− z
TF (x, x) + T̃F (xz, x)

}]
, (21)

which is consistent with that in Ref. [25, 26]. The complete evolution equation for TF (x)

shall also contain contributions from the three-gluon correlation functions, which have been

calculated in [26].

As we mentioned above, the contributions from Figs. 1(b-d) to the evolution of g̃(x) are

different from that of TF (x). For g̃(x) splitting, we do not take pole contributions from

these diagrams. For example, we will not have cancelation between diagrams Fig. 1(b) and

collinear expansion of quark line “k” of Fig. 1(a). More over, without taking pole there will

be an additional integral variable in the splitting function, similar to that for the evolution

of gT structure function [23]. The A⊥ contribution from Figs. 1(b-d) can be transformed

into TF and T̃F , or to GD and G̃D [17]. Because we do not take a pole for the scattering

amplitudes, the calculations for these diagrams are straightforward. The partial derivative

contribution from Fig. 1(a) is similar to that for TF (x) calculation. This part depends on

g̃(x). After adding all these contributions together, we obtain the evolution equation for

g̃(x),

∂g̃(xB, µ2)

∂lnµ2
=

αs

2π

∫
dxdy

x

{
g̃(x)δ(y − x)

[
CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
− CA

2

1 + z2

1− z

]

+ G̃D(x, y)

[
CF

(
x2

B

x2
+

xB

y
− 2x2

B

xy
− xB

x
− 1

)
+

CA

2

(x2
B + xy)(2xB − x− y)

(xB − y)(x− y)y

]

+ GD(x, y)

[
CF

(
x2

B

x2
+

xB

y
− xB

x
− 1

)
+

CA

2

x2
B − xy

(y − xB)y

]}
, (22)

where again z = xB/x, and the definitions of GD and G̃D follow that in [17]. The end-point

singularity from g̃(x) with color factor CA/2 at right hand side of the equation is canceled

out by that from G̃D at the second line. We further notice that we can replace GD and

G̃D with TF and T̃F at the right hand side by using the relations between them [15, 19].

However, we still have the g̃(x) term at the right hand side of equation. Although we can

re-write g̃(x) in terms of G̃D and T̃F [14], that will not eliminate its dependence completely
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and the right hand side will depend on G̃D, T̃F and GD instead. Therefore, the evolution of

g̃(x) depends on three functions: g̃(x), GD(x, y) and G̃D(x, y). This feature is different from

that for TF (x), where it only depends on TF and T̃F . It may indicate the nontrivial QCD

dynamics associated with the evolution of the correlation function g̃(x). This has also been

shown in its contribution to the Drell-Yan dilepton azimuthal asymmetry in pp scattering.

We leave this study in a future publication.

Since the derivation follows the similar procedure, we skip the technique details and only

list the final result for the evolution equation of correlation functions T
(σ)
F (x, x), h̃(x). For

T
(σ)
F , we have

∂

∂lnµ2
T

(σ)
F (xB, µ2) =

αs

2π

∫
dx

x

[
CF

{
2z

(1− z)+

+ 2δ(1− z)

}
T

(σ)
F (x, x)

+
CA

2

{
2

1− z
T

(σ)
F (xz, x)− 2z

1− z
T

(σ)
F (x, x)

}]
, (23)

which is consistent with the large transverse momentum Boer-Mulders function h⊥1 (x, k⊥)

calculated in [18]. Accordingly, we obtain the evolution equation for h̃,

∂h̃(xB, µ2)

∂lnµ2
=

αs

2π

∫
dxdy

x

{
h̃(x)δ(y − x)

[
CF

(
2z

(1− z)+

+ 2δ(1− z)

)
− CA

2

2z

1− z

]

+HD(x, y)

[
CF

2(x− y − xB)

y
+

CA

2

2xB(xBx + xBy − x2 − y2)

(xB − y)(x− y)y

]}
(24)

where the twist-three function HD(x, y) has been introduced in the Ref. [17]. Similar to that

of g̃(x), the evolution of h̃ depends on h̃ and HD.

In conclusion, we have derived the scale evolution for the transverse momentum dependent

quark-gluon correlation functions associated with the four k⊥-odd TMD quark distributions.

We have performed our calculations in light-cone gauge with a particular boundary condition

for the gauge potential, and we have checked that our results do not depend on these

boundary conditions. Our result on the evolution of TF (x) confirms recent calculations [25,

26]. The scale evolution for g̃ and h̃ reveals nontrivial QCD dynamics. We hope this will

stimulate further theoretical studies.

Meanwhile, we notice that the scale evolution for the general twist-three operators have

been calculated in the literature [23]. It will be interested to compare the evolution equations

for the correlation functions studied in this paper with these well-known results. Especially,

the evolution of the twist-three distribution gT (x) and its contribution to semi-inclusive

11



processes deserve further investigations. We will address these issues in the forthcoming

papers.
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